doi: 10.17586/2226-1494-2023-23-6-1136-1142


Raman spectroscopy of nanocomposites ZnO/ZnS and ZnO/ZnSe obtained by solvothermal-microwave synthesis method 

Y. Rati, A. Rini, A. Akrajas, M. Agustin


Read the full article  ';
Article in English

For citation:
Rati Y., Rini A.S., Akrajas A.U., Agustin M. Raman spectroscopy of nanocomposites ZnO/ZnS and ZnO/ZnSe obtained by solvothermal-microwave synthesis method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 6, pp. 1136–1142. doi: 10.17586/2226-1494-2023-23-6-1136-1142


Abstract
We report the ZnO/ZnS and ZnO/ZnSe nanocomposites synthesized using the solvothermal-microwave method. Raman analysis was thoroughly studied to explain phonon vibration mode in this paper. The strong intensity confirms the high- frequency phonon mode of hexagonal wurtzite ZnO. Also, the presence of Raman intensity of the cubic ZnS and ZnSe structures indicates the longitudinal optical phonon mode. In addition, we find several slight shifts in all ZnO modes for ZnO/ZnS and ZnO/ZnSe which demonstrate stress and strain in the crystal lattice. We investigate the change in particle size from confocal Raman microscopy. Therefore, the modifications to the material structure and particle size have enhanced its characteristics. Accordingly, the nanocomposite heterostructures by the simple chemical method are attractive materials suitable for optoelectronic devices.

Keywords: heterostructures, phonon vibration mode, Raman, solvothermal-microwave, wurtzite

References
  1. Raha S., Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Advances, 2022, vol. 8, no. 4, pp. 1868–1925. https://doi.org/10.1039/d1na00880c
  2. Theerthagiri J., Salla S., Senthil R.A., Nithyadharseni P., Madankumar A., Arunachalam P., Maiyalagan T., Kim H.-S. A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology, 2019, vol. 30, no. 39, pp. 392001. https://doi.org/10.1088/1361-6528/ab268a
  3. Park T., Lee K.E., Kim N., Oh Y., Yoo J.-K., Um M.-K. Aspect ratio-controlled ZnO nanorods for highly sensitive wireless ultraviolet sensor applications. Journal of Materials Chemistry C, 2017, vol. 46, no. 5, pp. 12256–12263. https://doi.org/10.1039/C7TC04671E
  4. Chung D.S., Hall T.D., Cotella G., Lyu Q., Chun P., Aziz H. Significant lifetime enhancement in QLEDs by reducing interfacial charge accumulation via fluorine incorporation in the ZnO electron transport layer. Nano-Micro Letters, 2022, vol. 14, no. 1, pp. 212. https://doi.org/10.1007/s40820-022-00970-x
  5. Kumar M., Patra A. Highly efficient and Reusable ZnO microflower photocatalyst on stainless steel mesh under UV–Vis and natural sunlight. Optical Materials, 2020, vol. 107, pp. 110000. https://doi.org/10.1016/j.optmat.2020.110000
  6. Ali S., Saleem S., Salman M., Khan M. Synthesis, structural and optical properties of ZnS–ZnO nanocomposites. Materials Chemistry and Physics, 2020, vol. 248, pp. 122900. https://doi.org/10.1016/j.matchemphys.2020.122900
  7. Fang X., Zhai T., Gautam U.K., Li L., Wu L., Bando Y., Golberg D. ZnS nanostructures: From synthesis to applications. Progress in Materials Science, 2011, vol. 56, no. 2, pp. 175–287. https://doi.org/10.1016/j.pmatsci.2010.10.001
  8. Kim J.S., Kim S.H., Lee H.S. Energy spacing and sub-band modulation of Cu doped ZnSe quantum dots. Journal of Alloys and Compounds, 2022, vol. 914, pp. 165372. https://doi.org/10.1016/j.jallcom.2022.165372
  9. Prabukanthan, P., Rajesh Kumar, T., Harichandran, G. Influence of various complexing agents on structural, morphological, optical and electrical properties of electrochemically deposited ZnSe thin films. Journal of Materials Science: Materials in Electronics, 2017, vol. 28, no. 19, pp. 14728–14737. https://doi.org/10.1007/s10854-017-7341-4
  10. Baranowska-Korczyc A., Kościński M., Coy E.L., Grześkowiak B.F., Jasiurkowska-Delaporte M. ZnS coating for enhanced environmental stability and improved properties of ZnO thin films. RSC Advances, 2018, vol. 8, no. 43, pp. 24411–24421. https://doi.org/10.1039/c8ra02823k
  11. Khan A.U., Tahir K., Albalawi K., Khalil M.Y., Almarhoon Z.M., Zaki M.E.A., Latif S., Hassan H.M.A., Refat M.S., Munshi A.M. Synthesis of ZnO and ZnS nanoparticles and their structural, optical, and photocatalytic properties synthesized via the wet chemical method. Materials Chemistry and Physics, 2022, vol. 291, pp. 126667. https://doi.org/10.1016/j.matchemphys.2022.126667
  12. Chen R., Cao J., Duan Y., Hui Y., Chuong T.T., Ou D., Han F., Cheng F., Huang X., Wu B., Zheng N. High-efficiency, hysteresis-less, UV-stable perovskite solar cells with cascade ZnO-ZnS electron transport layer. Journal of the American Chemical Society, 2019, vol. 141, no. 1, pp. 541–547. https://doi.org/10.1021/jacs.8b11001
  13. Cho S., Jang J.W., Lee J.S., Lee K.H. Porous ZnO-ZnSe nanocomposites for visible light photocatalysis. Nanoscale, 2012, vol. 4, no. 6, pp. 2066–2071. https://doi.org/10.1039/c2nr11869f
  14. Kamruzzaman M., Zapien J.A. Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell. Journal of Nanoparticle Research, 2017, vol. 19, no. 4, pp. 125. https://doi.org/10.1007/s11051-016-3729-y
  15. Krithika S., Balavijayalakshmi J. Synthesis of molybdenum disulfide doped zinc oxide nanocomposites by microwave assisted method. Materials Research Express, 2019, vol. 6, no. 10, pp. 105023. https://doi.org/10.1088/2053-1591/ab3828
  16. Kumar V., Sharma H., Singh S.K., Kumar S., Vij A. Enhanced near-band edge emission in pulsed laser deposited ZnO/c-sapphire nanocrystalline thin films. Applied Physics A: Materials Science and Processing, 2019, vol. 125, no. 3, pp. 212. https://doi.org/10.1007/s00339-019-2485-0
  17. Khan A. Raman spectroscopic study of the ZnO nanostructures. Journal of the Pakistan Materials Society (JPMS),2010, vol. 4, no. 1, pp. 5–9.
  18. Ridwan J., Yunas J., Umar A.A., Mohd Raub A.A., Hamzah A.A., Kazmi J., Nandiyanto A.B.D., Pawinanto R.E., Hamidah I. Vertically aligned Cu-doped ZnO nanorods for photocatalytic activity enhancement. International Journal of Electrochemical Science, 2022, vol. 17, pp. 220813. https://doi.org/10.20964/2022.08.10
  19. Abdelouhab Z.A., Djouadi D., Chelouche A., Touam T. Structural, morphological and Raman scattering studies of pure and Ce-doped ZnO nanostructures elaborated by hydrothermal route using nonorganic precursor. Journal of Sol-Gel Science and Technology, 2020, vol. 95, no. 1, pp. 136–145. https://doi.org/10.1007/s10971-020-05293-0
  20. Sharma P., Bhati V.S., Kumar M., Sharma R., Mukhiya R., Awasthi K., Kumar M. Development of ZnO nanostructure film for pH sensing application. Applied Physics A: Materials Science and Processing, 2020, vol. 126, no. 4, pp. 284. https://doi.org/10.1007/s00339-020-03466-w
  21. Bergman L., Chen X.B., Huso J., Morrison J.L., Hoeck H. Raman scattering of polar modes of ZnO crystallites. Journal of Applied Physics, 2005, vol. 98, no. 9, pp. 093507. https://doi.org/10.1063/1.2126784
  22. Abdulrahman A.F., Ahmed S.M., Ahmed N.M., Almessiere M.A. Fabrication, characterization of ZnO nanorods on the flexible substrate (Kapton Tape) via chemical bath deposition for UV photodetector applications. AIP Conference Proceedings, 2017, vol. 1875, no. 1, pp. 020004. https://doi.org/10.1063/1.4998358
  23. Cheng Y.C., Jin C.Q., Gao F., Wu X.L., Zhong W., Li S.H., Chu P.K. Raman scattering study of zinc blende and wurtzite ZnS. Journal of Applied Physics, 2009, vol. 106, no. 12, pp. 123505. https://doi.org/10.1063/1.3270401
  24. Kao C.H., Su W.M., Li C.Y., Weng W.C., Weng C.Y., Cheng C.-C., Lin Y.-S., Lin C.F., Chen H. Fabrication and characterization of ZnS/ZnO core shell nanostructures on silver wires. AIP Advances, 2018, vol. 8, no. 6, pp. 065106. https://doi.org/10.1063/1.5027015
  25. Meng X., Li L., Li K., Zhou P., Zhang H., Jia J., Sun T. Desulfurization of fuels with sodium borohydride under the catalysis of nickel salt in polyethylene glycol. Journal of Cleaner Production, 2018, vol. 176, pp. 391–398. https://doi.org/10.1016/j.jclepro.2017.12.152
  26. Zhou W., Liu R., Tang D., Zou B. The effect of dopant and optical micro-cavity on the photoluminescence of Mn-doped ZnSe nanobelts. Nanoscale Research Letters, 2013, vol. 8, no. 1, pp. 1–10. https://doi.org/10.1186/1556-276X-8-314
  27. Yang X., Wang Q., Tao Y., Xu H. A modified method to prepare diselenides by the reaction of selenium with sodium borohydride. Journal of Chemical Research - Part S, 2002, pp. 160–161. https://doi.org/10.3184/030823402103171726
  28. Shan C.X., Liu Z., Zhang X.T., Wong C.C., Hark S.K. Wurtzite ZnSe nanowires: Growth, photoluminescence, and single-wire Raman properties. Nanotechnology, 2006, vol. 17, no. 22, pp. 5561–5564. https://doi.org/10.1088/0957-4484/17/22/006


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика